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Abstract—Two-dimensional (2D) simultaneous localization and
mapping (SLAM) using a LIDAR is a method used to track
the position and orientation of a moving platform. 2D-SLAM
assumes that the platform translates in a 2D plane and can only
rotate about an axis perpendicular to that plane. However, the
assumption of no out-of-plane (OOP) motion does not hold true
for platforms experiencing motion in six degrees-of-freedom (6-
DOF), such as wearable technologies that have no 3D LIDAR.
This paper proposes a new algorithm, called the Level Plane for
SLAM (LPS) for removing OOP motion from 2D-LIDAR scans
generated on platforms experiencing 6-DOF without requiring
scan-matching in 3D. Like other existing methods, an IMU
is combined with a 2D-LIDAR to determine the platform’s
orientation, capture OOP motion, and generate a scan in 3D.
Unlike other methods, OOP motion is removed by projecting
scans onto a globally stabilized coordinate frame in 2D where
both scan matching and map alignment take place. The proposed
algorithm is validated over a series of experiments with different
levels of induced and observed OOP motion. Experimental results
show that LPS is able to handle more OOP motion than other
algorithms and run in real-time.

Index Terms—SLAM, scan matching, signal filtering, LIDAR
odometry, Lidar-IMU fusion, Hector SLAM

I. INTRODUCTION

In order to localize a moving platform, a map is required and
to generate a map, information about the platform’s location is
required. These are the fundamental principles behind simulta-
neous localization and mapping (SLAM) [1]. SLAM is widely
used in the fields of mobile robotics, autonomous vehicles,
augmented reality, tracking, path planning, and navigation [2]–
[4].

SLAM generates a map and localizes the platform within
that map in real-time, and as such accurately estimates the
motion of the platform. This is done by measuring the distance
between the platform and relevant landmarks in the environ-
ment from different locations. A common type of sensor used
in SLAM is a 2D-LIDAR. A 2D-LIDAR sends out beams of
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light that are reflected off objects and returned to the sensor
in the LIDAR. By observing the time of flight (ToF) or how
long the beam takes to return to the sensor, the distance to
the object can be calculated [5]. A LIDAR scan is then made
by rotating the beam generator about its axis and recording
the distances generated over one rotation. Since a 2D-LIDAR
only has one beam generator, it is only able to measure the
ToF in the plane of the beam.

After the data is acquired, the next step in SLAM is to
recover a map of the environment surrounding the sensor.
Consider a LIDAR scan containing the distances between
the sensor and its environment, at position A. The LIDAR
then moves to position B, and a second scan is taken. The
translation and rotation required to align the scans at A and
B represent the encoded motion of the LIDAR between the
scans.

Scan matching is the technique of decoding motion from
two partially overlapping scans [6]–[8]. Scan matching be-
comes challenging when only a few points between the scans
overlap. If scans have no overlap, the scan matching will
incorrectly align them and create an inaccurate map, which
can no longer be used for platform tracking, path planning,
or navigation. 2D-SLAM avoids this problem of divergent
scans by constraining the 2D-LIDAR’s platform motion to
movement on a plane and rotation about an axis normal to
that plane. This assumes that all the LIDAR scans are kept
level.

The assumption that the LIDAR has been kept level presents
an issue for platforms that experience motion in 6-DOF, such
as robots in rough terrains, drones, and wearable technology.
If the 2D-SLAM algorithm does not account for the out-of-
plane (OOP) motion, it assumes that all scans overlap, even
when they do not. This results in an inaccurate map of the
environment. In Fig. 1 this problem is illustrated by two
LIDAR scans A and B observing the same wall from the
same location. In A, the distance d1 to the wall is reported
correctly; however, in B the LIDAR is not kept level and the
distance is incorrectly reported as d2 > d1, thus, inaccurately
representing two distinct walls.

A common solution to account for OOP motion is to per-
form scan matching in 3D using a 3D-LIDAR. Although 3D
scan matching captures the platform’s OOP movement, 3D-
LIDARs are bulky, expensive, and have slower scan rates than
2D-LIDARs. To avoid using 3D-LIDAR a 2D-LIDAR can be
transformed into a 3D-LIDAR by mounting its base to a servo
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motor [9], [10]. A 3D point cloud is generated by transforming
the 2D scans into 3D at the angle of the servo motor. In [11]
an active mechanical stabilization system is presented ensuring
the 2D-LIDAR is kept in the same plane. While all the above
are cheaper than a 3D-LIDAR, they are also bulky and add
additional weight, making them challenging to use in drone
or wearable technology applications.

Another approach to account for OOP motion is Hector
SLAM. Hector SLAM transforms 2D LIDAR scans into 3D
using the platform’s orientation and creates a locally stabilized
coordinate frame that changes with the platform’s orientation
in real-time by using an inertial measurement unit (IMU) [12].
Hector SLAM combines the IMU’s linear acceleration and
angular velocity using an extended Kalman filter (EKF) to find
the platform’s orientation, from which a set of 2D scans can
be represented in 3D. Scan-matching then occurs in 3D and
this set of scans is merged with an existing 2D map through
a Gauss-Newton style optimization of scan-map alignments.
The 2D map generated from a 2D-LIDAR experiencing OOP
motion is computationally expensive and may not be accurate
since the locally stabilized coordinate frames are subject to
measurement inaccuracies from the IMU.

For pure 2D motion, these inaccuracies impact the location
of points within a scan, but subsequent scans are still guar-
anteed to be within the same coordinate frame. However, the
same cannot be said for 3D motion. OOP motion injected into
the locally stabilized coordinate frames rotates the coordinate
frames with respect to one another, meaning that they are no
longer guaranteed to be correlated with the 2D map. This issue
of scan-map convergence is clearly stated in [12]. To avoid this
issue, scans could be matched and aligned with the map in a
globally stabilized coordinate frame.

This paper proposes a real-time method of removing OOP
motion from 2D-LIDAR scans generated on platforms expe-
riencing 6-DOF without requiring scan-matching in 3D. The
proposed method, henceforth referred to as Level Plane for
SLAM (LPS), uses an IMU combined with a magnetometer
to determine the platform’s orientation using a faster filtering
technique than an EKF [13]. In Hector SLAM, the OOP
motion is captured via an IMU, transforming the 2D-LIDAR
scan into a locally stabilized 3D space before scan matching.
In contrast, here each scan is projected separately into the same
3D coordinate frame using the measured orientation of each
scan and immediately projected onto a globally stabilized 2D
plane. Scan matching and map alignment are then performed
in this globally stabilized 2D plan. The result is a method that
is more robust to OOP motion, significantly faster than the
time a LIDAR takes to generate a single scan, and leverages
additional information from the IMU to reduce the scan-
matching/map-alignment complexity from 3-DOF to 2-DOF.
To the best of the author’s knowledge, the concept of global
stabilization of OOP motion has not been introduced before.

The paper is organized as follows: Section II provides an
overview of the proposed mathematical framework. Section
III details the experimental validation of the LPS algorithm.
It is first validated through static mapping in Section III-A
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Fig. 1: LIDAR scans A and B are taken OOP of one another.
In A, the platform is kept level and returns distance d1,
whereas in B the platform is not level and the measured
distance is d2 > d1. The projection of d2 by angle θ onto
X0 is d2 with the OOP motion removed.

to demonstrate its effectiveness at removing the OOP motion
component from a single static laser scan. In Section III-B
& III-C the LPS is evaluated alongside Hector SLAM in
real-world indoor mapping scenarios of varying length with
different levels of OOP motion present. The results show
that LPS improves robustness to OOP motion compared to
Hector SLAM. The LPS software is publicly available1.

II. IMU-BASED GLOBAL STABILIZATION FOR OOP
MOTION COMPENSATION

In this paper, a matrix is represented in bold upper case
where the superscript defines the parent coordinate frame, and
the subscript defines the child coordinate frame. A vector is
represented in bold lowercase, where the superscript represents
its current coordinate frame. The coordinate frames are defined
as follows:

• The world coordinate frame RF0 has its origin at the
starting location of the platform, an x-axis in the positive
direction of the platform’s motion, and a z-axis pointing
out of the ground. A zero in the subscript or superscript
indicates this frame.

• The LIDAR coordinate frame RF1 has its origin at the
centre of the LIDAR, and axes inline with the world
frame axes. A one in the subscript or superscript indicates
this frame.

• The IMU coordinate frame RF2 has its origin at the
centre of the IMU, and coincident with the origin of
RF0, an x-axis inline with the world x-axis, and a z-
axis pointing out of the sensor normal to its base. A two
in the subscript or superscript indicates this frame.

A 2D-scan ks viewed in a 3D coordinate frame k is a
collection of LIDAR beam end points kpi=1,...,n such that,

ks =
[
kpi . . . kpn

]
(1)

kpi =
[
kxi

kyi
kzi

]T
(2)

where n is the total number of points in the scan, kxi and
kyi are the location of the ith point along the kth frame’s x

1https://github.com/samuelLovett/level-plane-SLAM.git
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Fig. 2: Data flow of the proposed global stabilization for OOP motion method (LPS). 2D LIDAR scans are combined with
the platform’s orientation to form a 3D scan, which is projected onto a consistent globally stabilized coordinate frame. Scan
matching and map alignment are then performed in the consistent globally stabilized coordinate frame.

axis and y axis, respectively. kzi = 0 ∀ i, as demonstrated in
Fig. 1 A.

The IMU measurement data is defined as,
2U =

[
2ωωω 2aaa 2mmm

]
(3)

where 2ωωω is the angular rate of change of the IMU about the
RF2 axes respectively, 2aaa is the linear acceleration of the IMU
about the RF2 axes respectively, and 2mmm is the magnetic field
vector acting on the RF2 axes respectively. These measure-
ments are then combined to determine the IMU’s orientation,
allowing the LIDAR scan to later be transformed into the
world coordinate frame RF0.

A. IMU Sensor Fusion

LIDAR-IMU sensor fusion is widely used in SLAM [14]–
[16]. Extracting position and orientation from an IMU requires
double integration of the acceleration with respect to time,
which leads to continuous accumulation of error [17]. To
account for this, (3) is filtered using a Madgwick filter [17]
to limit the measurement drift by adaptively combining the
gyroscope, accelerometer, and magnetometer measurements.
It outputs the platform’s orientation in quaternions which can
then be converted into a set of Euler angles,

0Φ =
[
ϕ θ ψ

]T
(4)

where ϕ, θ, ψ are the platform’s yaw, pitch, and roll in RF0,
respectively. The Madgwick filter uses less computational
memory and has a faster compute time for this process than
an EKF [13].

Once (1) has been transformed into the IMU coordinate
frame RF2, (4) allows the scan to be further transformed
into RF0. By transforming (1) to RF0, the OOP orientation
information from (3) is explicitly represented within the scan.
The scan is now in 3D with 6-DOF and can be decomposed
into the desired and stable X − Y components, Fig. 2.

To perform these transformations, a series of homogeneous
frame transformations are conducted. The LIDAR scan is
made homogeneous

(
kS̃

)
for mathematical convenience,

ks =
[
kpi . . . kpn

]
⇒ kS̃ =

[
kpi . . . kpn

1 1 1

]
(5)

The 4×4 homogeneous transformation matrix jHk is defined
as

jHk =

 jRk
jok

0 0 0 1

 (6)

where j is the desired coordinate frame, and k is the coordinate
frame which contains the LIDAR scan ks. The 3× 3 rotation
matrix jRk is defined as

jRk = Rz(α) ·Ry(β) ·Rx(γ) (7)

where Rz(α), Ry(β), and Rx(γ) are the 3×3 elementary ro-
tations by angles α, β, and γ required to align coordinate frame
j to coordinate frame k. Additionally, jok = (tx, ty, tz)

T is
the translation vector that aligns the origin of coordinate frame
j to the origin of coordinate frame k.

With (5) and (6) in homogeneous form, the scan kS̃ can be
transformed from coordinate frame k to coordinate frame j by
computing,

jS̃ = jHk · kS̃. (8)

In order to explicitly represent the OOP within the LIDAR
scan, the scan must first have the same coordinate frame as
the IMU (RF2). To perform the required transformation from
the LIDAR frame to the IMU frame, j and k, are defined as
2, and 1, respectively, in (5), (6), and (7). In (7) α, β, and γ,
are defined as the angles required to align RF1 to RF2.

With the scan transformed into RF2, it can further be
transformed into RF0 by repeating the above process with
2S̃, j = 0, k = 2, and (7) as the rotation matrix containing
the Euler angles extracted from (4), which represents the
platform’s orientation when 1s was created. The result is a
LIDAR scan transformed into RF0 containing the OOP motion
information,

0
S̃ = H2 · 2S̃. (9)

The homogenous portion of (9) is now removed, since its
mathematical convenience is no longer needed:

0S̃ =

[
0pi . . . 0pn

1 1 1

]
⇒ 0s =

[
0pi . . . 0pn

]
(10)
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TABLE I: Comparison of absolute pose error for different
levels of synthetic out of plane motion (sOOPM). The range
of sOOPM is given in degrees, all other units are in metres.

sOOPM Algorithm RMSE Mean STD min / max SSE

0 Hector 0.01 0.01 0.01 0 / 0.04 0.01
LPS 0.01 0.01 0.01 0 / 0.02 0

(-5, 5) Hector 0.25 0.24 0.06 0.12 / 0.31 6.48
LPS 0.01 0.01 0.01 0 / 0.04 0.01

(-10, 10) Hector 0.34 0.33 0.09 0.24 / 0.59 10.46
LPS 0.05 0.04 0.02 0.01 / 0.08 1.13

In the above 0s represents the LIDAR scan within the
world frame, whose orientation corresponds to the platform’s
orientation at the time of the scan’s creation, see Fig. 2. It
is important to note that 0s is not translated in (9) since the
origin of RF2 is coincident with RF0.

B. Creating the Globally Stabilized Coordinate Frame

With ks mapped to the world frame, the 0z component of
0pi is no longer zero. Therefore, in (2), 0zi ̸= 0 ∀ i, it is
now the location of the ith point along the z-axis of the world
frame.

By defining the points within a laser scan using a Cartesian
coordinate frame in (2), removal of the OOP components is
trivial. The projection of 0s onto the X − Y plane is,

0s =
[
0pi . . . 0pn

]
(11)

0pi =
[
0xi

0yi 0
]T

(12)

By projecting onto the globally stabilized X−Y plane, the
z-component containing all the OOP motion caused by the
platform’s pitch and roll angles (θ, ψ) is removed. The motion
contained within the LIDAR scan has now been reduced from
6-DOF to 3-DOF, as standard 2D SLAM algorithms require.

LPS also reduces the scan-matching complexity from 3-
DOF to 2-DOF. In standard 2D scan matching, the motion en-
coded within the LIDAR scan (x-translation, y-translation, and
rotation about the LIDAR’s z-axis) is relative to the LIDAR
coordinate frame. However, the scan matching algorithm must
estimate the platform’s motion in the world coordinate frame
(x-translation, y-translation, and rotation ϕ about the z-axis).
This requires the additional step of transforming the relative
angular heading of the LIDAR into its absolute heading within
the world frame. In the proposed algorithm, ϕ is already
known via (4) and encoded within the LIDAR scan via (10).
Therefore, the scan matching algorithm only needs to calculate
the translations along x and y axes. This improves mapping
accuracy and robustness to OOP motion, as shown in the
following sections.

III. EXPERIMENTAL VALIDATION

To test the effectiveness of LPS, the experimental setup ex-
hibiting 6-DOF motion shown in Fig. 2 is used. The platform
is composed of a firefighting helmet modified to house a 2D
LIDAR (SICK Tim 581) and an IMU (PhidgetSpatial Precision
3/3/3 High Resolution). The SICK Tim 581 has a scanning

a     Initial Scan
a     3D Scan
a     X-Y Projected Scan
a     Ground Truth

)A( )B(

Fig. 3: Rotated Static Mapping experiment. (A) shows a top-
down comparison between the initial scan (red), the projected
scan (yellow), and the ground truth scan (green). (B) shows
this again from an isometric view.

speed of approximately 6.67 ms (15 scans per second), an
angular resolution of 0.33° [18], and is located atop the helmet
such that it is level when a user looks forward. It commu-
nicates over micro-USB using TCP/IP and is powered by
an external Lynxmotion 3s 11.1V 4000mAh lithium polymer
battery. The IMU is mounted 5 cm below the base of the
LIDAR near the user’s head to ensure it is close to the centre
of rotation. The data from both sensors is processed on a laptop
computer using a Linux virtual machine with a 2.30 GHz
single core CPU and 4 GB of RAM, on robot operating system
(ROS) [19]. Three experiments are conducted: 1) rotated static
mapping, 2) small-scale SLAM with platform level, and 3)
large-scale SLAM with OOP motion.

A. Rotated Static Mapping

For the static indoor test, the platform in Fig. 2 is placed in
the centre of a hallway at a roll angle of 30°, replicating what
is seen in Fig. 1B. The hallway’s ground truth measurement
is obtained by placing the platform level in the same location
and recording a laser scan without LPS implemented.

Fig. 3 overlays the stages a laser scan undergoes as it
traverses LPS, first from a top-down perspective in (A) and
then from an isometric angle in (B). The isometric angle
shows how the initial scan (red lines) is transformed into 3D
(white lines) and then projected down onto the globally stable
plane (yellow lines). The top-down perspective includes the
ground truth scan (green line). The top-down view shows that
the initial scan is wider than the projected scan and the ground
truth. If not accounted for, this can generate inaccurate maps.
By removing the OOP motion, the projected scan is a near-
perfect replica in scale of the ground truth scan. The scans
do not overlap perfectly because the LIDAR changes pose
between the collection of the tilted scan and the ground truth
scan.

B. Small-Scale SLAM with Platform Level

The OOP motion component of a scan is caused by the
pitch and roll of the platform’s orientation given in (4). For
the second experiment, LPS was evaluated alongside Hector
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Proposed Method Hector SLAM

Fig. 4: A comparison of maps generated by Hector SLAM and
LPS with increasing levels of synthetic OOP motion (sOOPM)
added as shown in the figure. In the third row, during trial three
when the randomly sampled values of the sOOPM range from
−10° and 10° Hector SLAM is no longer able to make a usable
map.

SLAM over multiple trials of the same recorded small-scale
mapping dataset with different levels of synthetic OOP motion
(sOOPM) added to (4). The original dataset has a total path
length of 9.641 m, and was recorded by placing the platform
shown in Fig. 2, level on a cart, and traversing an office space.
The cart ensured that little OOP motion was contained within
the dataset, allowing sOOPM to be added to (4) during each
trial. The amount of sOOPM added was given by randomly
sampling a uniform distribution sOOPM ∼ U(a, b) where
a and b are the upper and lower bounds, respectively. In
total, three trials were conducted with trial one adding no
sOOPM, trial two adding sOOPM ∼ U(−5°, 5°), and trial
three adding sOOPM ∼ U(−10°, 10°). After the sOOPM
was added to the original dataset, the modified dataset was
given to LPS and Hector SLAM to generate two independent
maps.

The performance of each algorithm across each trial is
compared qualitatively by observing the generated map, Fig.
4, and quantitatively by using the absolute pose error (APE) as
is standard [20], see Table I. The APE compares the estimated
trajectory provided by Hector SLAM and LPS to the known
ground truth trajectory across the entire trajectory. To calculate
the APE the EVO evaluation of odometry and SLAM Python
package was used [20].

As expected when observing trial one, Fig. 4 row one, where
no sOOPM is present, both maps converge to the true map.
The results shown in Table I confirm this observation, showing

a mean APE of approximately zero for both LPS and Hector
SLAM. In trial two the limitations of Hector SLAM start to
become apparent with the scan-matcher misaligning the left
side of the map in Fig. 4 column Hector SLAM, row two.
The APE for this trial reflects the effect of the added sOOPM
noise on Hector SLAM, showing an average deviation from
the ground truth of 24 cm. On the other hand, LPS shows no
change between trial one and trial two. In trial three, Fig. 4
row three, when sOOPM ∼ U(−10°, 10°), Hector SLAM
can no longer generate an explorable map for path-planning
or navigation. However, LPS is hardly impacted and continues
to show an accurate map. This observed level of robustness to
sOOPM is due to the immediate projection of all OOP motion
onto the globally stabilized coordinate frame. Hector SLAM,
on the other hand, transforms scans into a locally stabilized
coordinate frame, which is not guaranteed to be correlated
with the global map.

C. Large-scale SLAM with OOP Motion

For the third experiment, LPS and Hector SLAM were
evaluated over one trial of the same real-time indoor SLAM
scenario having motion characteristics shown in Fig. 6. The
data was collected by having a person wear the platform in
Fig. 2 as they navigated a 75m long corridor in 75 seconds.
The person was instructed to walk without modifying their
gait in an attempt to keep the helmet level; which can be seen
when observing the platform’s motion in Fig. 6. The jagged
and overlapping angular speed curves in Fig. 6 describe just
how much rotation and OOP motion occurred while a person
was simply walking. If the person had modified their gait to
keep the platform level the motion curves would be much
smoother showing a more constant rate of change.

Fig. 5 shows the map LPS and Hector SLAM generated over
the data containing OOP motion. As expected from the results
of Section III-B, and observing the motion characteristics of
the platform, Hector SLAM is not able to account for the
OOP motion induced by a human’s gait cycle, resulting in a
map that is not usable for path planning or navigation. LPS
significantly improves the robustness of 2D-SLAM to OOP
motion generating a usable map by removing the OOP motion
within the scans, and aligning them within a globally stabilized
coordinate frame.

Throughout this experiment, LPS took an average of 4.76
milliseconds to process a single scan, with a median value
of 3.70 milliseconds. The processing time is defined as the
difference in time between a scan’s initial creation and that
scan’s projection onto the globally stabilized coordinate frame.
The SICK Tim 581 has a scanning speed of approximately
6.67 ms. Thus, the proposed algorithm is well-suited for real-
time applications involving dense LIDAR scans.

IV. CONCLUSION

In 2D-SLAM, most algorithms assume that motion only
occurs in a 2D plane. This assumption does not hold for plat-
forms encountering rough terrain, drones, and wearable tech-
nology. Past solutions to overcome this problem include the
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Fig. 5: A comparison of maps generated by LPS and Hector
SLAM while navigating a corridor. The dataset is collected
from a person walking with the platform on their head. Both
maps are created using the same dataset.

Fig. 6: IMU measurements obtained during the large-scale
SLAM with OOP Motion experiment showing the motion
experienced by the platform while being worn by the user.

use of 3D-LIDAR, mechanical intervention such as [9], [10],
and LIDAR-only odometry, but they are expensive, bulky, and
have a high sensitivity to noise [10]. This paper proposes
LPS an algorithm that processes 2D laser scans to remove
the inaccuracies caused by OOP motion for 2D-SLAM. Using
information about the platform’s orientation gathered by an
IMU, LIDAR scans are transformed into 3D. The 3D scans are
then projected onto a globally stabilized 2D coordinate frame.
The transformation captures the previously unaccounted-for
platform motion, and the projection from 3D to 2D removes
these components entirely.

The method is validated in a static and two dynamic map-
ping scenarios. The results demonstrate that LPS is consistent
with using Hector SLAM when no OOP motion is present.
However, when OOP motion is present at different levels,
LPS outperforms Hector SLAM and is able to maintain good
accuracy across the platform’s complete trajectory. LPS is fast
enough to run in real-time and can be used to improve the
robustness of 2D SLAM algorithms subjected to OOP motion.

While LPS improves the robustness of the 2D maps, further
improvements can be made. In cases where the platform’s
pitch or roll cause the LIDAR scan to observe the ground or
roof, the projection of these points onto the globally stabilized
reference plane will result in false laser endpoints (artifacts)
within the scan. These artifacts hamper scan-matching in the
same way OOP motion does; causing the scan-matcher to
incorrectly align scans and create inaccurate maps, which can
no longer be used for platform tracking, path planning, or
navigation. Future work involving the use of adaptive filters or
deep learning techniques to classify and remove these artifacts
would further improve the robustness of 2D-SLAM.
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